为什么构件计算所用的强度与前面设置的不一致?

胡志超 结构售后技术支持

Q1: SATWE 配筋简图下面的说明里为什么会出现参数中没设置的墙混凝土等

级?

第8 层混凝土构件配筋及钢构件应力比、下翼缘稳定验算应力简图(单位:cm*cm)

本层:	层高 = 4000 (mm)	梁总数 =	483 柱	主总数 =	39	支撑总数	= 0
	墙总数 = 22	墙柱总数	= 14	墙梁总数	t =	2	
	混凝土强度等级: 梁	C30 柱	(含支撑	ŧ) C35	墙	C35/C30	
	主筋强度: 梁 3	60 柱(含支撑)	360	墙 3	60	
	(DPL代表大偏拉, XPI	L代表小偏	拉, PL作	代表大\小	偏拉	拉并存)	

A: 上图中参数设置的本层墙混凝土等级为 C35, 但是配筋简图中出现了 C30。因为勾选了 "框架连梁转壳元",导致按框架梁输入的连梁转化成墙开洞的形式,而按框架梁输入的连 梁强度等级是 C30,转化成墙开洞形式以后,将其统计到墙内,因此在配筋简图中会出现 C30 的标识。

■ 分析和设计参数	补充定义			×
援参数名 X <u> 送信息</u> 多種型及句络	水平力与整体坐标夹角(度) 混凝十容重 (LeW/m3)	0	结构材料信息	 ✓ 墙梁转杆单元,当跨高比> 5 ✓ 框架梁转壳元,当跨高比
りません C34 风荷载信息 地震信息 地震信息	钢材容重 (ktN/m3)	78	结构体系 框剪结构 、	☞ 扣除构件重叠质量和重量
福震信息 活荷载信息 二阶效应	裙房层数 转换层所在层号	0	恒活荷载计算信息 模拟施工加载 3 ▼	目本可计算规关控被目重 弹性板按有限元方式设计
调整信息 利度调整 内力调整	嵌固端所在层号 地下室层数	2	风荷载计算信息 计算水平风荷载 •	全機强制刚性機板假定 不采用
设计信息 基本信息 钢构件设计	墙元细分最大控制长度 (m) 弹性板细分最大控制长度 (m)	1	地震作用计算信息 计算水平地震作用 ◆	 采用 • 仅整体指标采用
材料信息 钢筋信息 混凝土	☑ 转换层指定为薄弱层		执行规范 全国	整体计算考虑被梯刚度 ③ 不考虑
何執知音 工况信息 组合信息 地下安信息	 ✓ 墙梁跨中节点作为刚性横桁 ■ 考虑梁板顶面对齐 	板从节点	"规定水平力"的确定方式 楼层剪力差方法(规范方法)	○ 考虑○ 以上两种模型包络设计
性能设计 高级参数 云计算	构件偏心方式 传统移动节点	方式 ▼	高位转换结构等效侧向刚度比计算 传统方法 •	被梯模型 壳单元
			墙倾覆力矩计算方法 只考虛顯板和有效翼缘,其余计入机 ▼	结构高度 ◎ A级 ◎ B级 施工次序
		P		
4	指定规定水平力的计算方法。 前参考《抗规》第3.4.3-2条和	、 建议选择"楼层剪 《高规》第3.4.5	力差方法(规范方法)"。"节点地震作用CQC组合7 条的规定。	5法"是程序提供的另一种方法,其结果仅供参考。具体
参数导入参数	岐夏默认			确定 取消

Q2:为什么板计算书中显示的板强度与 PM 中设置不一致?

楼板计算书

一、基本资料:
1、房间编号: 352
楼板类型:现浇混凝土板
结构重要性系数:1.00
2、材料:
板厚 H = 250 mm
砼强度等级:C35; 钢筋强度等级:HRB400
田松化: μ=1/5.0
保护层厚度: 板底 20 mm,板顶 20 mm
3、楼板自重: 程序不自动计算(取值 O.O kN/m2)
4、荷载:
受力最不利组合号: 2
工况: 恒载 荷载值: 32.40 系数 1.30
工况: 活载 荷载值: 5.00 系数 1.50
5、共有边界 8条,边界条件:固定/固定/铰支/铰支/铰支/固定/固定/固定/
6、计算方法: 有限元计算。
7、活荷载不利组合: 不考虑
8、选筋不考虑: 挠度、裂缝宽度的限值要求

1 100 5.00 2.00 2 100 5.00 2.00	C30	20	C30	C30	C30	HRB/100	1100400	1100.400
2 100 5.00 2.00						1110400	HK6400	HKB400
	C30	20	C30	C30	C30	HRB400	HRB400	HRB400
3 100 5.00 2.00	C30	20	C30	C30	C30	HRB400	HRB400	HRB400

A: 施工图中板的强度信息完全读取 PM 建模中的定义,要注意的是在 PM 中板的强度是可以自定义的,一般当模型不是由同一个人建模或者经过楼层拼装时,可能会忽略局部位置自定义导致的差异,因此出现此种情况首先需要检查每块板的自定义情况。

如下图所示,黄色即为自定义修改过的数值,白色为默认值。

全倭谷标准层信息

Q3:梁施工图中附加吊筋的计算面积如何计算?

KPM	Ŀ	部结构	补充	验算	基础	丰厚	线性	模板	梁	柱	ţ	4	板	组合楼	板	层间板	楼	睇	工程量	砼图	較审
鋼線	设计 参数	批量 出図	口 打开 旧图	金新图	「 査找	拆分	デ 合并	 支座 修改	当 梁名 修改	1000 1000 1000 1000 1000	▶ 钢筋 重算	初前 拷贝	加筋 修改	↓ ● 标注 开关	₩₩	101 标动	い 重标 钢筋	記 筋 面积	 梁挠 度图 	八八 梁裂 维图	S/R 验算
设	置		绘图	•		į	车续梁修	改		•	钢筋	编辑		•	标注	編辑		•	▼校	▼	•
	v	(学改) 生 续 差 (デ) 手 志 (所) 加 一 新 (所) 加 不 第 (下 g U p) 「 (下 g U p) 「	QRKL1第1 約入附加 5: <u>6</u> 5: <u>7</u> 7: <u>7</u>	处附加额 箍筋个数 3.0 km (2) 注续深。	國勤 如 _重 等效面積 〔↑〕〔↓〕	(新计算) 只: 80 只: 50 月 油 加 防	吊舫			KL1(1)250x500	#0@100/UE0/0)		$ 2 \oplus 2 2 \cdot 2 \oplus 2 2 + 2 \oplus 20 $			$\Sigma \Sigma $					

A: 程序根据混规 9.2.11 计算附加钢筋的面积,当附加箍筋不能满足计算要求时,自动增加附加吊筋。以上图为例,集中力为 263 KN,附加吊筋承受集中荷载为 263-2*6*8*8* π /4*360=45.85 KN。则所需吊筋面积为 45.85/(360*sin45)=180.11mm²,选择 2C14 钢筋,实

配面积为 2*2*14*14* π/4*sin45=435.40mm²,以上计算面积均是根据 HRB400 得到的,程序 输出均是按 HPB300 输出,因此要将上述计算面积进行等强代换,才能的到程序输出的等效 面积: 435.40*360/270=580.5mm²。

以上是 V5 及以前版本的执行逻辑, 吊筋最小直径按主筋选筋库的设置执行, 且钢筋等 级与主筋保持一致, V6 程序对这个位置作了优化, 可以单独设置吊筋的级别与最小直径, 同时可以设置附加筋的组合形式。并且对于输出结果也更加简洁清晰。

👫 梁绘图参数				
箍筋腰筋	箍筋选筋库		附加横向钢筋	
	箍筋选筋库	8,10,12	 附加箍筋+吊筋 (Q配) (Q配) 	置附加箍筋
比例设置	篩筋间距		梁类型 最小	最大
	框架梁加密区箍筋最大间距	100	框架梁 3 非面如沙 3	3
に見	非框架梁箍筋最大间距	200	HPILEARCANC 3	
	悬挑梁箍筋最大间距	100	吊筋最小直径	12
E	箍筋间距取整模数	10	🔲 吊筋钢筋强度单独指定	HRB400 -
连续梁归开	链筋肢数下限		☑ 执行《建筑结构可靠性设计统一标》	£≫GB50068-2018
•••	 程序确定 用户 	指定	腰筋设置	
纵筋参数	300 宽梁箍筋肢数	2	腰筋迭筋库 10,12,14,16,18	
	350 宽梁箍筋肢数	4	腰筋最大问距 200	
箍筋腰筋	- 400宽梁箍筋肢数	4	22肋目径 ● 按图集设直 一型一侧有板时,计省hw扣除和厚	
	1 箱筋肢数允许为单数		☑ 边梁设置抗扭腰筋	
挠度裂缝	□ 按容⊏泅路更求配罢有全统路(息)	(JQ 2 9 4-3)	抗扭纵筋配置方式	
		((,-, <u>-</u> ,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-	◎ 全部由腰筋承担	◎ 按截面高宽比分配
			• 扣际构造腰筋后,均分到上卜纵筋) ① 全部均分到上下纵筋
	说明			
	箍筋腰筋			
				with sub-
		変刻守人	密刻守山 W.复默认	網定 単利用
は王	远途 建炭烯	\$P380	18V±	仪体
1-KL2(1)-1		* ×	$\sim \dot{\Delta}$	
附加方式: 〇 箍筋 🛛 🔘	吊筋 💿 箍筋+吊筋		$\overline{\nabla}$	
	总根数 配筋			
附加箍筋 HRB400 、	6 8 250(2) 重算吊筋			
附加吊筋 HRB400 -	· 2 12 计算	$ \simeq $	$\supset \top \leftarrow$	
计算结果 集曲力取: 262,071-37	显示设置		$\cap \bigcirc $	
⁹⁴⁴¹¹ 917.202.971KN 箍筋实配面积:603.19 mm	2 显示集中			
箍筋承受的荷载: F1=603.	19*360.00/1000=217.15kW 第头大小 1			
吊筋计算面积	☑ 显示平法		$\neg \forall \land$	
(262.97-217.15)*1000/(3 早齢定時面刊:452.20	80.00*sin45)= 179.99mm2		\leq \sim $$	
11/20/25146/14177. NOL. 39 mm		=		
选择附加筋	计算书 应用			
			\exists \land \Leftrightarrow	
		\sim \prec	$\mathcal{F} \subset \mathcal{L}$	

Q4:为什么在 JCCAD 中有导入 DWG 功能导入多块筏板,只能导入一部分,另一部分就无法导入了?

A: 一般遇到此问题是想将独基或承台按筏板计算,并且在 CAD 中预先画好,通过导入的 方式实现建模,由于独基或承台的数量比较大,因此筏板的数量就可能超过程序的最大容量 (目前程序最多支持 500 块),所以就会出现导入某部分后,此时超过了程序支持的最大数 量,也就无法再继续导入的情况。

Q5: JCCAD 中对于复合地基的沉降是如何计算的?

A: 程序根据《建筑地基处理技术规范》7.1.7条相关规定,用复合地基与天然地基承载力的比值作为调整系数,直接修正处理深度范围内的土层压缩模量,然后根据修正后的土体参数按普通天然地基的计算方法得到沉降。

7.1.7 复合地基变形计算应符合现行国家标准《建筑地基基础设计规范》GB 50007的有关规定,地基变形计算深度应大于复合土层的深度。复合土层的分层与天然地基相同,各复合土层的压缩模量等于该层天然地基压缩模量的ξ 倍,ξ 值可按下式确定:

 $\zeta = \frac{f_{syk}}{f_{ak}}$ (7.1.7) 式中: f_{ak} —基础底面下天然地基承载力特征值(kPa)。